منابع مشابه
Long Memory in Volatility
How persistent is volatility? In other words, how quickly do financial markets forget large volatility shocks? Figure 1.1, Shephard (attached) shows that daily squared returns on exchange rates and stock indices can have autocorrelations which are significant for many lags. In any stationary ARCH or GARCH model, memory decays exponentially fast. For example, if {εt } are ARCH (1), the {εt} have...
متن کاملEstimating long memory in volatility
We consider semiparametric estimation of the memory parameter in a model which includes as special cases both the long-memory stochastic volatility (LMSV) and fractionally integrated exponential GARCH (FIEGARCH) models. Under our general model the logarithms of the squared returns can be decomposed into the sum of a long-memory signal and a white noise. We consider periodogram-based estimators ...
متن کاملLong Memory in Stochastic Volatility
Recent studies have suggested that stock markets' volatility has a type of long-range dependence that is not appropriately described by the usual Generalized Autoregressive Conditional Heteroskedastic (GARCH) and Exponential GARCH (EGARCH) models. In this paper, diierent models for describing this long-range dependence are examined and the properties of a Long-Memory Stochastic Volatility (LMSV...
متن کاملVolatility processes and volatility forecast with long memory
We introduce a new family of processes that include the long memory (power law) in the volatility correlation. This is achieved by measuring the historical volatilities on a set of increasing time horizons and by computing the resulting effective volatility by a sum with power law weights. The processes have 2 parameters (linear processes) or 4 parameters (affine processes). In the limit where ...
متن کاملIndirect Estimation of Long Memory Volatility Models
An indirect estimator is proposed for two long memory volatility models; the fractionally integrated generalised autoregressive conditional heteroskedasticity (FIGARCH) model and the long memory stochastic volatility (LMSV) model. The small sample properties of the indirect estimator are compared to the small sample properties of conventional maximum likelihood estimators. It is found that the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantitative Finance
سال: 2017
ISSN: 1469-7688,1469-7696
DOI: 10.1080/14697688.2016.1260757